Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers.

نویسندگان

  • Yilei Li
  • Hugen Yan
  • Damon B Farmer
  • Xiang Meng
  • Wenjuan Zhu
  • Richard M Osgood
  • Tony F Heinz
  • Phaedon Avouris
چکیده

We characterize the influence of graphene nanoribbon plasmon excitation on the vibrational spectra of surface-absorbed polymers. As the detuning between the graphene plasmon frequency and a vibrational frequency of the polymer decreases, the vibrational peak intensity first increases and is then transformed into a region of narrow optical transparency as the frequencies overlap. Examples of this are provided by the carbonyl vibration in thin films of poly(methyl methacrylate) and polyvinylpyrrolidone. The signal depth of the plasmon-induced transparency is found to be 5 times larger than that of light attenuated by the carbonyl vibration alone. The plasmon-vibrational mode coupling and the resulting fields are analyzed using both a phenomenological model of electromagnetically coupled oscillators and finite-difference time-domain simulations. It is shown that this coupling and the resulting absorption enhancement can be understood in terms of near-field electromagnetic interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fano-like resonances arising from long-lived molecule-plasmon interactions in colloidal nanoantennas.

We examine ultrafast dynamics in a coupled molecule-plasmon system. Using a new ultrafast Raman technique called surface enhanced-femtosecond stimulated Raman spectroscopy (SE-FSRS), we prove that plasmonic nanoparticles and adsorbed molecules are coupled by the appearance of Fano-like lineshapes, which arise from the interaction of narrowband vibrational coherences and the broadband plasmon re...

متن کامل

Gold nanoparticle mediated graphene plasmon for broadband enhanced infrared spectroscopy.

Graphene plasmonics, with dynamic tunable resonance wavelength, has been successfully used in broadband plasmon-enhanced infrared spectroscopy. However, the requirement for external voltage loading makes the practical application sophisticated. In this work, the hybrid structure of graphene nanodot array (GNA) and gold nanoparticles (AuNPs) has been proposed as a passive platform for broadband ...

متن کامل

As-grown graphene/copper nanoparticles hybrid nanostructures for enhanced intensity and stability of surface plasmon resonance

The transfer-free fabrication of the high quality graphene on the metallic nanostructures, which is highly desirable for device applications, remains a challenge. Here, we develop the transfer-free method by direct chemical vapor deposition of the graphene layers on copper (Cu) nanoparticles (NPs) to realize the hybrid nanostructures. The graphene as-grown on the Cu NPs permits full electric co...

متن کامل

Three Dimensional Hybrids of Vertical Graphene-nanosheet Sandwiched by Ag-nanoparticles for Enhanced Surface Selectively Catalytic Reactions

Three dimensional (3D) plasmonic nanostructure is perfect for the surface-enhanced Raman scattering (SERS) and also very suitable for surface catalytic reaction, but how to design and fabricate is still a robust task. Here, we show a 3D plasmonic nanohybrid of vertical graphene-nanosheet sandwiched by Ag-nanoparticles on the silicon nanocone array substrate for enhanced surface catalytic reacti...

متن کامل

Plasmon Excitations of Multi-layer Graphene on a Conducting Substrate.

We predict the existence of low-frequency nonlocal plasmons at the vacuum-surface interface of a superlattice of N graphene layers interacting with conducting substrate. We derive a dispersion function that incorporates the polarization function of both the graphene monolayers and the semi-infinite electron liquid at whose surface the electrons scatter specularly. We find a surface plasmon-pola...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 14 3  شماره 

صفحات  -

تاریخ انتشار 2014